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Overview

♦ Expression signatures and models for predicting 

toxicity

♦ The TXG-MAP: a network-based approach for 

understanding mechanisms of toxicity

♦ In vivo vs. in vitro: can we use cultured cells for 

MoA determination?

♦ Challenges with whole-tissue gene expression 

analysis
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Overview: gene expression signatures

♦ Training set: expression profiling 

of liver tissue after treatment with 

‘toxic’ (e.g. ALT inducers) and 

‘non-toxic’ doses of various 

compounds

♦ Supervised learning approaches 

(e.g. support vector machines) 

identify patterns of expression that 

differentiate two groups

♦ Application of model for classifying 

samples with unknown toxicity 

outcome

♦ Many applications in 

toxicogenomics: DrugMatrix, 

MAQC II, etc.
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Gene signatures and other ‘omic predictors of toxicity: 

a well-trod path
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liver AND toxicity AND (“toxicogenomic*" OR "gene signature*" OR "expression signature*" OR "systems 

biology" OR "molecular network*") 
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Overall percent of genes differentially 

expressed is prognostic of tissue injury

• 1895 treatments, of which 220 cause adverse liver pathology in repeat dose studies

• 85/119 treatments causing >=15% gene DE have adverse liver pathology

• gene differentially expressed when abs(FC) > 1.5 with limma p-value < 0.05 on 9074 liver expressed 

gene set

Compound Dose (mg/kg)

Study 

duration 

(days)

Percent 

DE

MICONAZOLE 920 5 48

METHAPYRILENE 100 29 47

METHAPYRILENE 100 15 39

THIOACETAMIDE 45 29 38

AMINOSALICYLIC ACID 2337 5 37

ETHAMBUTOL 1000 8 35

N-NITROSODIMETHYLAMINE 10 5 31

VINBLASTINE 0.3 5 31

N-NITROSODIETHYLAMINE 30 8 31

THIOACETAMIDE 45 15 30

MELOXICAM 33 5 30

METHAPYRILENE 100 8 30
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Assessing gene expression-derived 

features for adverse outcome analysis

• Expression data from 362 single dose experiments of 24 hr duration predictive

of outcome in 29 day repeat-dose experiment (TG-GATEs data; adverse 

outcome = hepatocellular necrosis, bile duct hyperplasia or fibrosis)

• Evaluate whether a gene expression-derived score is a significant variable in a 

logistic regression model that uses overall transcriptional activity as a covariate 

(avg EG – average absolute eigengene): coefficient and p-value for b2

Method
p-value not adjusted 

for avgEG

p-value adjusted 

for avgEG

Zhang et al 4 gene signature (Pharmacogenomics J, 2013) 7.4E-11 0.13

DrugMatrix ALT signature (ASPLP) 1.3E-05 0.05

module 69 (cell-cell junction; flotilin complex) 2.5E-11 1.3E-09

module 320 (oxidative stress (Txnrd1) 0.74 4.8E-06

ln
𝑃$%

1 − 𝑃$%
= 𝛽* + 𝛽, - 𝐴𝑣𝑔	𝑚𝑜𝑑𝑢𝑙𝑒	𝑠𝑐𝑜𝑟𝑒 + 𝛽; - 𝑚𝑜𝑑𝑢𝑙𝑒	𝑠𝑐𝑜𝑟𝑒



… no need for any of those over-complicating 

bioinformaticians (who don’t do any real work) … 

let’s just run a qPCR panel and average 10-20 

genes …

… is that any better than LDH release? …

… or in silico endpoints (cLogP, QSAR) ?



Lilly risk-grid for estimating probability of 

adverse outcomes in 4 day rat tox studies

RPH LC50
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<5	L/kg 0.44	(9) 0.1	(20) 0.16	(45)

5-10	L/kg 0.60	(5) 0.50	(10) 0.32 (19)

>10	L/kg 1	(14) 0.53	(32) 0.43	(14)

Probability
(Number of compounds)

high conc. in tissue, high 
intrinsic toxicity

High conc in tissue, low 
intrinsic toxicity

Low conc in tissue, high 
intrinsic toxicity

Low conc in tissue, low 
intrinsic toxicity

Sutherland et al, J Med Chem, 2012



Chen / Tong “rule of two” – lipophilicity 

and daily dose vs. DILI

Chen et al, Hepatology 2013



Is fancier better? 
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Gene signatures and 

systems biology

qPCR panel 

(transcriptional 

“temperature”)

In-silico / in-vitro 

derived rules



Summary (1)

♦ Gene expression signatures can predict liver 

injury

♦ Counting the number of differentially expressed 

genes in liver is predictive of liver injury

♦ Simple in-silico approaches are predictive …

♦ Must prove the added-utility given added 

complexity



Overview

♦ Expression signatures and models for predicting 

toxicity

♦ The TXG-MAP: a network-based approach for 

understanding mechanisms of toxicity

♦ In vivo vs. in vitro: can we use cultured cells for 

MoA determination?

♦ Challenges with whole-tissue gene expression 

analysis



When the prediction failed: understanding 

MOA when unexpected toxicity arises
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<5	L/kg 0.44	(9) 0.1	(20) 0.16	(45)

5-10	L/kg 0.60	(5) 0.50	(10) 0.32 (19)

>10	L/kg 1	(14) 0.53	(32) 0.43	(14)

Probability
(Number of compounds)

22% of molecules in low-moderate risk bins produce 

adverse outcomes in 4 day rat tox studies



Beyond prediction: transcriptomics and 

safety assessment

♦ What is the MOA leading to toxicity?

♦ Can we develop an a qPCR panel for SAR 

purposes (i.e. rationally design a better 

molecule)? 

♦ Is it relevant in humans?

• Network preservation

♦ Is it monitorable in humans?

• Measurable biomarkers in the network?



The TXG-Map in a nutshell

co-expression 

networks using 

WGCNA and DM 

liver data

organized in phylogenetic-

tree like map to analyze 

individual treatments (here: 

LPS in rat liver)

Understand treatment effect 

in context of 4182 DM and 

TG rat liver experiments

Sutherland et al, 

Pharmacogenomics J, 2017



What’s wrong with pathway analysis?

• GSEA on canonical pathways sometimes gives similar results as module 

analysis (e.g. module 46 and cholesterol biosynthesis)

• Large areas of co-expression biology are not represented by pathways

modules 

predictive 

of liver tox



MoA of ethionamide toxicity

• When using module scores as ‘expression phenotype’, ethionamide strongly 

resembles tunicamycin

• Modules associated with ER stress and single cell necrosis highly induced



Developing an open-source platform for 

toxicogenomics research

• Cloud-hosted platform to access data 

and computational methods to 

increase reproducibility and ease of 

use for all scientists (not just the 

bioinformatics nerds)

• Collaboration between Indiana 

Biosciences Research Institute, Dow 

Agrosciences and Eli Lilly; additional 

participants welcome

• Current status: proof-of-concept 

website allowing access to DM, TG 

data and various analysis methods

• Contact Dan Robertson at IBRI, 

drobertson@indianabiosciences.org

• Access at 

http://ctox.indianabiosciences.org
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R = 0.63
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Comparison of TG-GATEs experiments 

involving the same compound

Sutherland et al, PLOS Comput Biol, 2016



Effect of placing hepatocytes in culture in 

the context of ~4000 rat liver experiments

Average module score

(degree of transcriptional perturbation)



Flat culture is crude … what about other 

approaches?



Rat liver organoids from Huch et al.



Liver organoids in culture with 

differentiation media

View in the paper

Lgr5+ in expansion medium
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In green box – less 

repressed in diff. medium 

– fatty acid oxidation, Nrf2-

target genes, electron 

transport chain, xenobiotic 

metabolism, 

In red – less induced 

in diff. medium – cell 

cycle, ribogenesis, 

etc.

View at global transcriptome level  – differentiation media 

moving cells in right direction but long way to go … 

R = 0.95



Classifying human DILI compounds is 

not enough …

Chen et al, Hepatology 2013



Summary

♦ Culture model evaluation using rodent cells: ~5000 rat 

liver treatments and dozens of models with expression 

data, vs. 0 treatments and ~10 diseases for human liver

♦ Viability for 60 days isn’t enough (HepG2 cells are viable 

forever)

♦ Evaluate the extend to which culture models return cells 

to baseline transcriptional state observed in intact liver

♦ Which culture models recapitulate known MoA for same 

well-studied toxicants?
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Module effect sizes for increased 

mitosis and necrosis are correlated

R = 0.77

Effect size (Cohen’s d) = (<score for livers with phenotype> - <score livers without 

phenotype>) / pooled score stdev



Pairwise comparisons of 36 tox

phenotypes on effect size

• Colored on Pearson R from -0.8 

(blue) to 0.8 (red)

• Single cell necrosis, increased 

mitosis, necrosis, vacuolation, 

biliary hyperplasia, fibrosis all 

cluster in bottom-right

Sutherland et al, 

Pharmacogenomics J, 2017



Lineage tracing and FACS sorting in liver 

injury models

• 78% of liver volume is hepatocytes, 15% empty space, 3% endothelial 

cells, 2% Kuppfer cells, 1% fat-storing cells, 1% hepatic stellate cells

• Transcript number is proportional to cell volume (Kempe et al, Mol Biol

Cell 2015, 15:797)

• But hepatocytes are increasingly recognized as plastic cells …

“Bipotential adult liver progenitors are derived from 

chronically injured mature hepatocytes”, Tarlow et al. Cell 

Stem Cell 2014, 15: 605



Comparing gene expression of various 

hepatic cell types

1) Calculate a “fold change” for each gene that would arise upon conversion 

of one cell type to another

2) Score fold change data with WGCNA modules

3) Evaluate the extent to which expression change in whole liver can be 

explained by changing stoichiometry of cell types

Data sources:

♦ Axin2+ heps vs Axin2- heps (untreated; GSE68806)

♦ duct vs hep (CCl4-treated; GSE32210)

♦ duct vs liver (CCl4-treated; GSE32210)

♦ hep vs liver (CCl4-treated; GSE32210)

♦ Lgr5+ vs hep (CCl4-treated; GSE32210)

♦ Lgr5+ vs liver (CCl4-treated; GSE32210)

♦ bilPD vs hep (DDC-treated; GSE55552)

♦ bilPD vs hepPD (DDC-treated; GSE55552)

♦ hepPD vs hep (DDC-treated; GSE55552)



Comparing tox phenotypes to sorted cell 

comparisons

Tox phenotype or model Most similar sorted cell comparison
R-most similar sorted 

cell comparison

Tbili >= 100%, 2) with hyperplasia at any grade LGR5 POS VS LIVER (CCL4) 0.73

Fibrosis at any grade with any other pathology at any 

grade
LGR5 POS VS LIVER (CCL4) 0.70

Bile duct hyperplasia, 1) no other findings LGR5 POS VS HEP (CCL4) 0.62

Single cell necrosis, 1) no other findings DUCT VS HEP (CCL4) 0.61

Glucose <-15%, 1) no path findings and FC >-15% DUCT VS LIVER (CCL4) 0.39

Hematopoeisis, 2) any other finding DUCT VS LIVER (CCL4) 0.37

Necrosis, 1) no other findings LGR5 POS VS HEP (CCL4) 0.33

Increased mitosis, 1) no other findings LGR5 POS VS HEP (CCL4) 0.27

Tbili >= 100%, 1) no path findings HEP VS LIVER (CCL4) 0.24

Cholesterol > 40%, 1) no path findings HEP VS LIVER (CCL4) 0.21

Vacuolation, 2) allowing hypertrophy at any grade LGR5 POS VS LIVER (CCL4) 0.14

Trigs > 80%, 1) no path findings HEP VS LIVER (CCL4) 0.01

Hypertrophy >= 1.33, 2) no other finding HEP VS LIVER (CCL4) -0.01

Trigs < -60%, 1) no path findings and FC >-15% HEP VS LIVER (CCL4) -0.02

Cholesterol <-30%, 1) no path findings and FC >-15% LGR5 POS VS HEP (CCL4) -0.04

Vacuolation, 1) no other findings LGR5 POS VS HEP (CCL4) -0.04

Increased glycogen, 2) any other finding LGR5 POS VS HEP (CCL4) -0.09



Comparing human liver disease (change 

from normal) to sorted cell comparisons

Pearson 

R

• NASH and biliary atresia expression changes explainable by increased “duct-

like” cells

• HCC of various etiologies and hepatoblastoma explainable by changes seen in 

cultured cells, including Lgr5+ cells 

• Non-tumor cirrhotic tissue from HCC patients is intermediate



Whole liver gene expression analysis of CCl4 

treatment: mostly the wrong answer

Days of dosing
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ER-stress 

module 
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of 415 

modules

30 mg/kg
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• rank of module 76m in top 10 only for 6 out of 24 TG rat liver 

experiments using CCl4 treatment (3 doses x 8 time points)



CCl4-treated rodent FACS sorted hepatocytes

Adapted from Tarlow et al., Cell Stem Cell 2014, 15: 605

Amount of transcript for endoplasmic reticulum proteins

Rank of ER-stress module when analyzing expression of sorted heps: 3 out of 415 

data from GSE32210 comparing sorted heps @ 6 days of CCl4 treatment vs. 

untreated liver

Zoom out



Role of average module score in uniquely 

associating modules with pathology

• Treating average module score as a covariate in associating module 

behavior with pathology resolves several histologically distinct phenotypes 

into separate clusters

• Hypothesis: average module score is an approximate surrogate for extent 

of ductular reaction (and hence liver injury)



Summary

♦ Several histologically-distinct injured states (“tox

phenotypes”) of liver resemble each other when using 

whole liver gene expression data

♦ Several human liver diseases resemble each other when 

using whole liver gene expression

♦ The resemblance can be largely explained by increasing 

proportions of “hepPD”, “Lgr5+” of biliary epithelial cells 

in the liver 

♦ Changing proportions of cell types may obscure 

underlying changes within each population

♦ Analyzing selected animal models via FACS-sorted cells 

may be worth considering



What does this mean for whole-organ 

expression profiling?

♦ No impact for ‘signature’ applications –“barcode” 
doesn’t look like the product but represents it 
uniquely

♦ If we care about mechanism however …

• Statistics can help dissect a population of profiles but 
less useful for individual cases

• Short duration studies (<12 hours) likely minimize 
effects of population changes

• Long duration studies (and therefore analysis of 
human samples) may require single cell RNA-seq or 
FACS + conventional analysis to derive useful 
insights



Gene signatures based on DM experiments 

“predict” adverse Lilly pathology outcomes

• forward-validation: signatures 

from DM data, validation on 

Lilly expression and tox

outcomes

•matched histology vs. gene 

expression results for 201 

treatment groups annotated 

with adverse (25) or non-

adverse (176) histopath

findings

• ANOVA on:

X: adverse/non-adverse

Y: DM signature score

• report p-value

Adverse?

p	=	4.3E-09



Prediction: “a statement about what will happen 

or might happen in the future”

Days of dosing

mRNA

Outcome at 29 days: 

adverse

mRNA

Outcome at 29 days: 

non-adverse

• Predictive: mRNA from earlier tissue sample where pathology not present

• Concurrent: mRNA from tissue where the pathology is present



Impact of cell culture on hepatocyte 

expression

What happens to hepatocytes in culture, when compared back to their state in 

liver?

• Isolate hepatocytes with standard perfusion procedure

• Perform expression profiling at 0 hrs (immediately after isolation; no exposure 

to culture medium), 4, 24 and 48 hours in culture

• Calculate fold change for each gene:

• log	(
?@A	BCDEBFFGHI	GI	JKLMKEB	?M	N,;N	HE	NP	QEF

?@A	BCDEBFFGHI	GI	KIMEB?MBR	LG@BE
) or	

• log	(
?@A	BCDEBFFGHI	GI	JKLMKEB	?M	N,;N	HE	NP	QEF

?@A	BCDEBFFGHI	?M	*	QEF
)

Similar results; Sutherland et. 

al., PLOS Comput Biol 2016

Typical drug-treatment experiment: What happens to hepatocytes inside a liver 

when exposed to drug

• Liver from drug treated animals (3) vs. liver from vehicle-treated animals (3)

• Calculate fold change for each gene: log	(
?@A	BCDEBFFGHI	GI	MEB?MBR	?IGU?LF

?@A	BCDEBFFGHI	GI	JHIMEHL	?IGU?LF
)



Comparing transcriptional effects of clofibrate, 

methapyrilene and 24 hrs cell culture

Modules ordered clockwise from A branch
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8% genes 

DE

47% genes 

DE

54% genes 

DE

• Transcriptional 

changes 

effected by 24 

hrs in culture 

comparable in 

impact to 29 

days of 

methapyriline

treatment

24 hrs in culture


