

Intelligent Biopharmaceutical Solutions

Modelling Human Immunity in Health and Disease

Human Artificial Lymph Node Model (HuALN) for Biopharmaceuticals Testing and Disease Modelling in vitro

BioMed21, Brussels (Dec 8-9, 2015)

C. Giese and A. Lubitz

Content

- Challenges of modelling human immunity in vitro
- Recent status on relevant *in vivo* models and current achievements for *in vitro* modelling
- **The HuALN model**
- **Conclusions**

Modelling Autoimmune Diseases

Innovative human-specific investigational approaches to autoimmune disease (Anja van de Stolpe and Robert H. Kauffmann RSC Adv. 2015 (5))

Pathogenesis of autoimmune diseases: Breaking tolerance

Wegener's Granulomatosis

Autoimmune Diseases

Therapeutical intervention:

- "Old school" treatment: Immune suppression
- Innovative therapy: Inducing tolerance

Modelling the Human Immune System

Understanding immunity:

- Development and organogenesis
- Homeostasis, regeneration and aging
- Immune responses
- Immune system-related diseases

Treating immunity:

- Vaccination (Inducing immunity)
- Infection diseases (Breaking tolerance)
- Cancer (Lymphoma, leukemia; improving immunity)
- Inflammation diseases (Inducing tolerance)
- Allergy and sensitization (Inducing tolerance)

Hhealth

The Vitruvian Man (Leonardo da Vici, approx. 1490)

Disease

Source: www.comedix.de

The Complexity of the Human Immune System

Micro Physiological Systems (MPS) for the Human Immune System

Biological challenges and technical solutions for MPS

- Solid organs
 (Tissue complexity, cellular composition, compartmentalization)
- Mobile cells and fluidics
- Innate and adaptive, cellular and humoral responses
- Systemic effects
- Lifelong memory

Challenges for MPS by biological heterogeneity

- Population heterogeneity
- Seasonal changes, previous infections, hidden therapeutical treatments
- Non responders
- Diseases and disease status
- Maturation, age and senescence

Biological Scaling

Minaturization and "scalability of immunity"

What is the minimum functional unit of an organ?

In vivo Testing: Customized Animal Models

- Immune deficient mice (e.g. SCID)
- Transgenic mice (Vector based; gene knock-out/knock-in)
- **Humanized mice** (with human immune cells)
- Xenograft models (with human tumor cells)
- Genome-edited animals (CRISPR/CAS9)?

Transgenic mice model

Cavailable for recovery) at Taconic

Humanized animals as well a xenograft models show limitations in reproducibility and relevance

to a certain extent.

Humanised mice

Source: www.taconic.com

Spheroid Tumor Models

The "cellular suspects"

The micro-enviroment

Multi-cell-type 3D tumor micro-spheroid co-culture models (hanging drop technology)

In combinations with cancer cells endothelial cells and stromal cells

Source: Kelm etal (ADDR, 2014)

Cell-based in vitro Methods for Immune Functional Testing at PBG

- ADCC, ADCP
- Peptide binding assays
- **MEC's testing**
- **DC** and DC/T cell assays
- Mulling Hualn Model

DC assay

DC/T cell assay

Peptide binding assay
MHC I/II
human mDCs
FACS

The Human Artificial Lymph Node Model (HuALN)

The Human Artificial Lymph Node Model (HuALN) Testing Services in Four Applications

IG: Understanding unwanted immunogenicity of biopharmaceuticals and formulations

F: MoA and adverse effects of super-agonists and checkpoint modulators

VAC: Potency, candidates ranking, dosing and MoA of viral and peptide vaccines, adjuvants and formulations

ITOX: Assessing chemical immunotoxicology

Bioreactor Devices

HIRIS 3

- 2 mL culture volume (perfusion rate 1 mL/day)
 - large cell repertoire (108 DC/PBMC)
 - cell perfusion -

μALN (μALN 1.0)

- Miniaturized size (10-20 fold)
- 150-250 μL culture volume (perfusion rate 100 μL/day)
- Reduced cell repertoire (10⁶-10⁷ DC/PBMC)
- Parallelization for increased number of test samples and screening applications
- User friendly
- In-situ imaging

Basis for an autonomous device (µALN 2.0): Integrated fluidics, heating and gassing No incubator, no external fluidics, easy to handle

The HIRIS Bioreactor Device micro porous membrane CCS + hydrogel matrix **Perfusion, Drug Exposition and Sampling Restimulation Port** mobile cells immobile cells/ APC-network mAb exposition + magnetic beads sample + IL-4, GM-CSF Gas Analysis: - Viability iDCs - CD markers Antigen/mDC Antigen Antigen/mDC Antigen/mDC restimulation restimulation stimulation restimulation Media in mDC and CD14neg co-culture 28 days DC generation Bioreactor culture **Cell analysis** and IHC

Sampling culture supernatants

HuALN: Analytical Parameters

Monitoring Cytokines to Immune Response Analysis

T cell activation for TH-1 pathway

Monitoring Cytokines to Immune Response Analysis

T cell activation for TH-2 pathway

Immune Responses Triggered by Cytokines

Graphical Cytokine Data Summary (Exemplified): Immunogenicity of Induced Aggregates (Drug Substance: mAb)

Modelling Autoimmune Diseases

Innovative human-specific investigational approaches to autoimmune disease (Anja van de Stolpe and Robert H. Kauffmann RSC Adv. 2015 (5))

Basic concept for modelling an inflammation disease on a miniaturized organ model ("patient-on-a chip")

Important achievements:

- Miniaturized platform suitable for patient biopsy material
- Continuously perfused
- Long-term, organotypic culture
- Steady-state conditions
- Controlled drug exposition
- Dynamic response profiling

Conclusions

In general:

- Good bioreactor platforms available (Single organ and MOCs)
- Relevant human cell and tissue models available
- Miniaturized and multiplexed analytics available
- Advanced in situ-imaging technologies available

HuALN:

- The HuALN model is a useful tool for testing immune human responses in vitro Applications: IG, IF, Vac, Tox)
- The model is using "well trained" immune cells of adult and healthy donors
- GLP-like test procedures available (Medical devices, SOPs, fully documented, data/reports QA reviewed)
- The HuALN model is ready for service in Open for tech-transfer and licensing

Outlook

In general:

- Disease models with patient biopsy material
- Simulating disease models (Surrogates)
 - Drug induced inflammation
 - Leukemia/cancer (Co-cultivation models)
- **Use of iPS technology and e.g. genome editing (CRISPR/CAS9)**

HuALN:

- X Spheroid model fir the immune system
- Inflamed HuALN model
- **X** HuALN with patient biopsy material

