

The use of induced pluripotent stem cells to model neurodevelopmental disorders: *MECP2* duplication syndrome as an example

Hilde Van Esch Center for Human Genetics Leuven, Belgium

Cellular reprogramming in disease modeling

- Lack of human brain tissue is a major hurdle to study the pathophysiology
- Mouse models, however, often fail to recapitulate all features observed in humans which greatly affects further insights into the disease pathology
- Alternative approach is to use the induced pluripotent stem cell (iPSC) technology to develop a valid disease model
- iPSCs are similar to embryonic stem cells in gene expression, ability to form all the three germ layers and *in vivo* chimera formation

Applications of induced pluripotent stem cells

The potential of human iPSCs to differentiate into cells of almost any tissue type of the human body provides exciting new opportunities for *in vitro* research and therapeutic intervention

Generation and pluripotent gene analysis of Mecp2dup-iPSCs

Readout of an authentic iPS cell:

- Pluripotent gene expression analysis
- Silencing of transgenes
- Immunofluorescence analysis
- Teratoma assay

Differentiation of pluripotent cells to neurons of cortical identity

ESCs upon differentiation, efficiently generated cortical-like neurons which expressed cortical neuronal genes like *RELN*, *CTIP2* and *TBR1*

Analysis of MECP2 expression in differentiated neurons

▶ Duplication of *MECP2* gene is maintained in disease neurons

Expression analysis of synaptic gene transcripts and proteins

▶ Mecp2dup neurons show enhanced expression of *VGLUT1*, *SYN1*, and *PSD95* when compared to control neurons

Morphological analysis of Mecp2dup-cortical neurons

- > Patient neurons show significant increase in dendritic complexity
- Significant increase in immature dendritic spine density is observed in Mecp2dup cortical-like neurons

Electrophysiological analysis of Mecp2dup cortical-like neurons

In collaboration with Prof. Muotri, UCSD

- > Spontaneous neuronal activity of 4 independent channels show synchronized bursts
- ▶ Immunostaining of MAP2 and SYN1 positive Mecp2dup-neurons growing on MEA Chip.

Electrophysiological analysis of Mecp2dup cortical-like neurons

Sync burst in 5 min intervals

In collaboration with Prof. Muotri, UCSD

- ➤ Mecp2dup-neurons display altered electrophysiology network properties
- ▶ iPSC derived neurons are functional and Mecp2dup-neurons exhibit enhanced sync burst activity compared to WT neurons which is opposite to what is seen in case of RTT neurons

Screening of epigenetic compounds in Mecp2dup-neurons

Screening of epigenetic compounds in Mecp2dup-neurons

No.	Compound	Mechanism of Action	Average Value
8	Scriptaid	HDAC inhibitor	0.966
22	BML-266	SIRT2 inhibitor	1.101
24	Fluoro-SAHA	HDAC inhibitor	1.115
26	AGK2	SIRT2 inhibitor	1.136
34	Oxamflatin	HDAC inhibitor	1.077
38	NCH-51	HDAC inhibitor	1.112
42	BML-281	HDAC-6 inhibitor	1.119

PSD-95 levels after 1 week of treatment

In collaboration with Prof. Muotri, UCSD

- Mecp2dup-neurons exhibit enhanced post-synaptic protein PSD-95
- > Compound screening using library of epigenetic modulators showed rescue of PSD-95 level

Morphological rescue

▶ Among the screened compounds, compound 8 and 38 which corresponds to HDAC inhibitors showed effective rescue in PSD-95 and morphological phenotype

Functional rescue

Glutamatergic puncta after treatment

MEA rescue after treatment

In collaboration with Prof. Muotri, UCSD

▶ Among the screened compounds, only one compound could also rescue the altered neuronal network activity

Conclusions of this study

- Epigenetic modifiers were able to restore PSD-95 protein level and also rescue the morphology of the affected neurons similar to that of control neurons
- One modifier was also able to rescue the electrophysiological phenotype
- The data obtained from our study and from studies using MECP2-Tg mice and human Rett iPSC derived neurons convey that balanced dosage of MECP2 is critical for normal brain function

iPSCs can be considered as an ideal tool for designing a human model to understand the mechanism of neurodevelopmental disorders

Limitations & Challenges

- Human induced pluripotent stem cells are not always genetically stable and the role of epigenetic factors and processes during reprogramming and differentiation is not well understood
- Dish ≠ living organism
- Reproducibility can be a problem, many biological replicates are necessary/more patients
- High throughput screening is very costly
- Human brain consists of many different cell types that "live and work" together
- Ideal tool for screening of compounds, however, still difficult to predict effect of same compound in living organism/ side effects

Acknowledgements

Centre for Human Genetics, Leuven

Dr. Savitha Nageshappa Prof. Claudia Bagni

Dr. Emanuela Pasciuto

Stem Cell Institute, Leuven

Prof. Catherine Verfaillie

Patients & families

University of California San Diego, USA

Prof. Alysson Muotri Dr. Cassiano Carromeu

Institute of Interdisciplinary Research, ULB

Prof. Pierre Vanderhaeghen

Dr. Ira Espuny

