

Microphysiological systems – from scientific models towards industrial adoption of qualified assays and their regulatory acceptance

> Uwe Marx, Founder & CSO of TissUse, Germany

> > www.tissuse.com

The team is the key to innovation

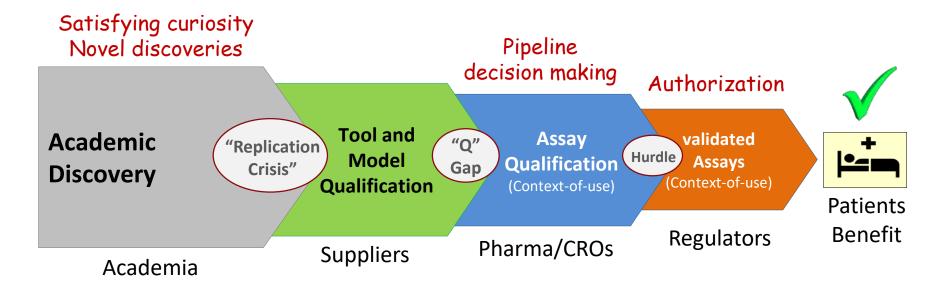
- $\circ~$ ISO 9001:2015 certified QMS
- \circ $\,$ revenue-based product and service business
- \circ solid customer basis in Pharma and Academia
- 9 patent families with > 140 granted patents
- 16 human on-chip organ models established,
- 12 multi-organ combinations proven,
- 22 assay formats available

Organ-on-Chip, Multi-Organ-Chip, Body-on-Chip, Human-on-Chip, collectively Microphysiological systems (MPS)

are microfluidic cell culture devices capable of emulating human biology *in vitro* at the smallest biologically acceptable scale.

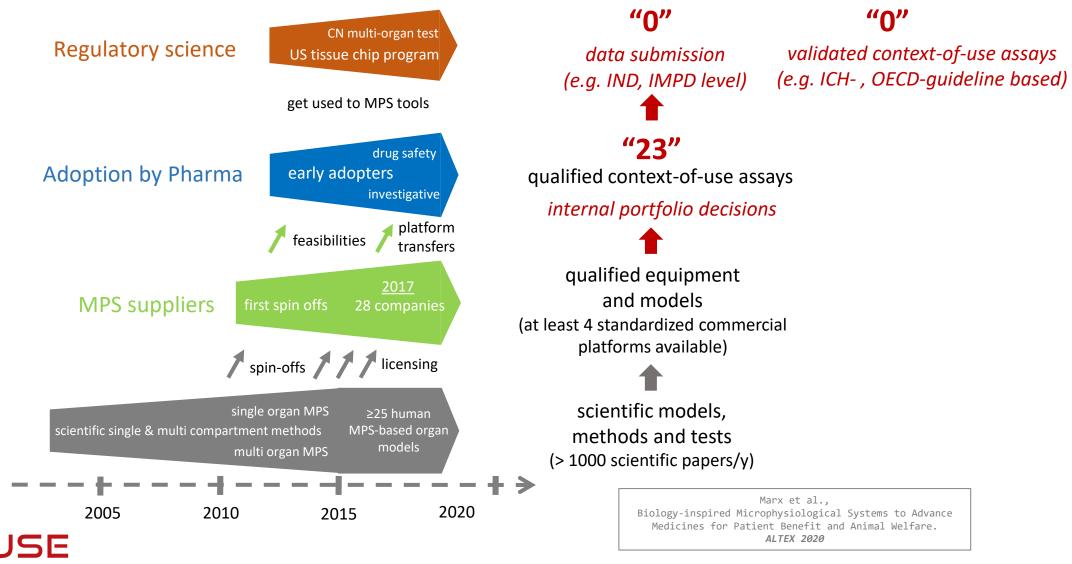
For detailed definitions, please refer to:

- Suzanne Fitzpatrick's presentation (next one)
- Recent MPS stakeholder report (ALTEX, 2020, open access)


MPS-based **models**, **tests** and **methods** MPS-based **qualified assays** MPS-based **validated assays**

The key to industrial adoption and regulatory acceptance is a functional value chain

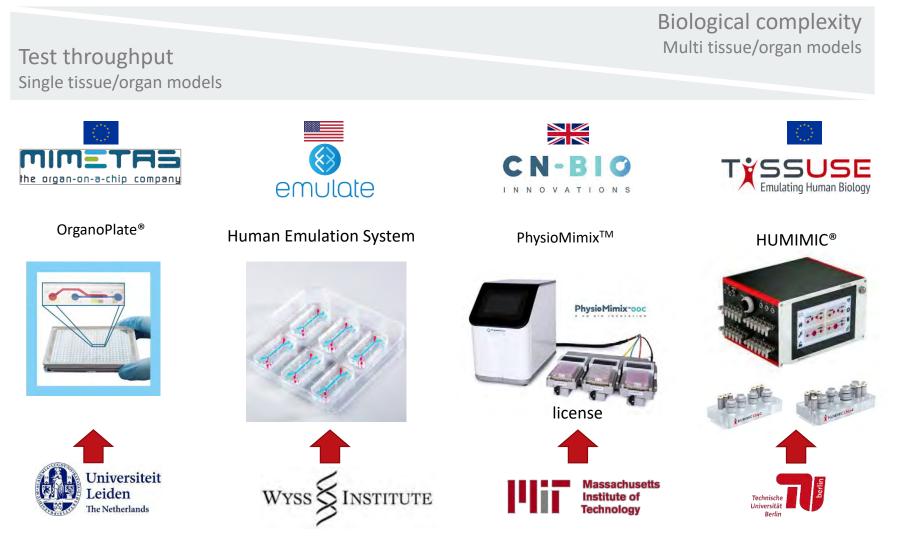
MPS-based assay value chain



Nature 2013 Begley et al.
Reproducibility: Six red flags for suspect work.
PLoS Med 2016 Ioannidis et al.

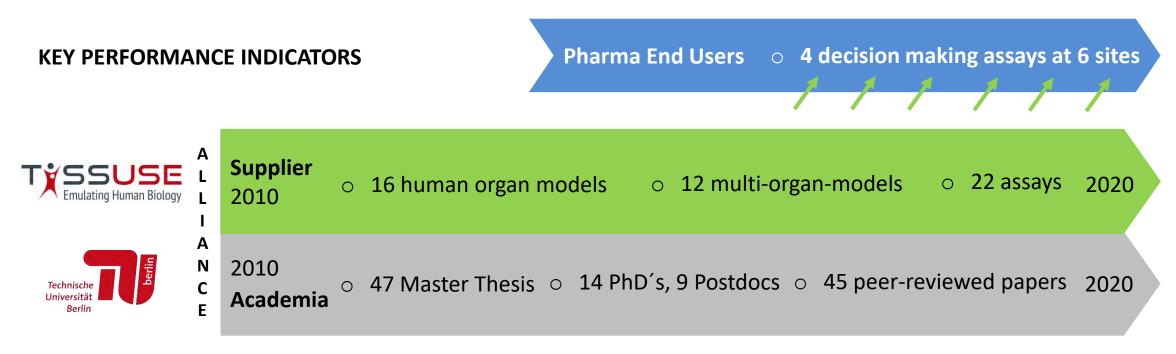
Why Most Clinical Research Is Not Useful.

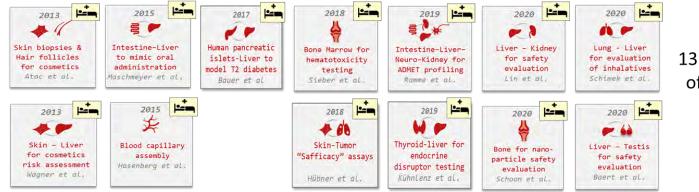
Establishment of a stakeholder community for MPS



Korean Webinar, 05.03.21

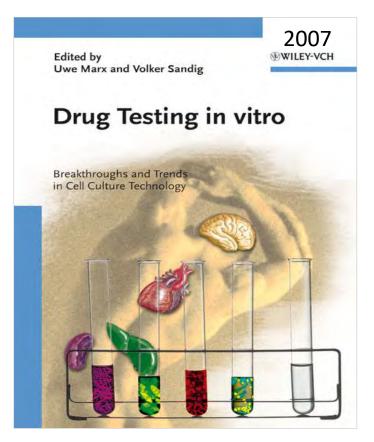
Emulating Human Biology


*model = organ model or disease model


At least four commercially available MPS platforms

TX SSUSE Emulating Human Biology

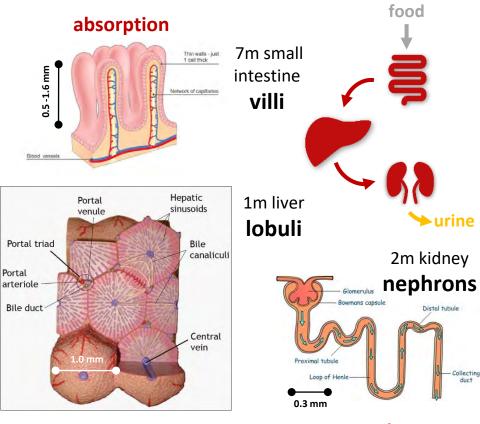
Our 10-year KPI's for translational success



13 papers targeted aspects of industrial adoption for patient's benefit and animal welfare

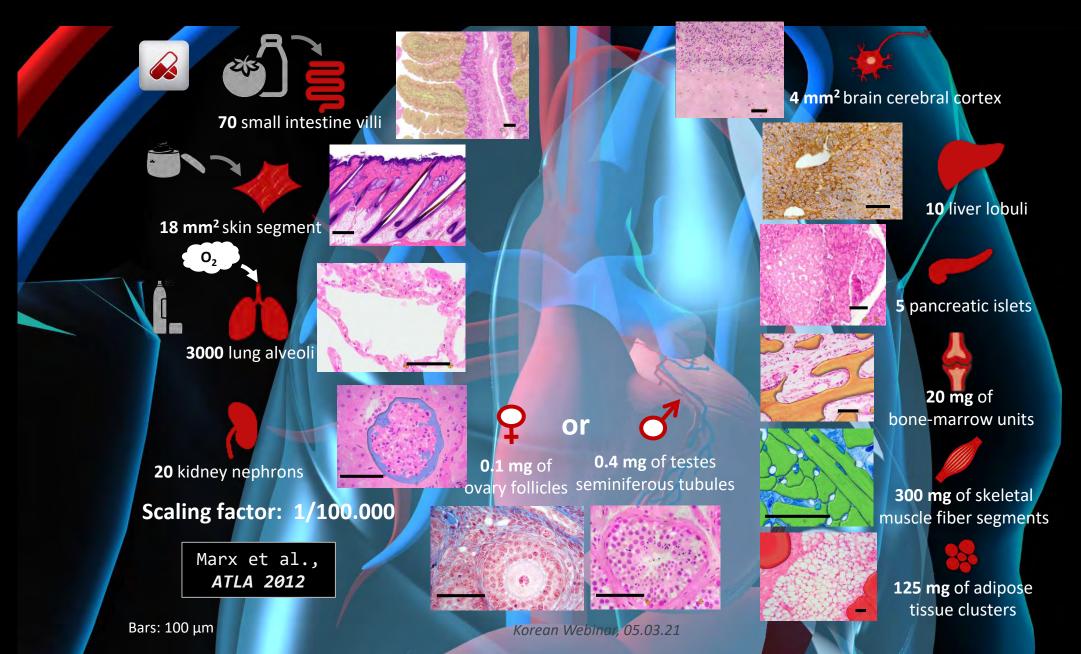
Working hypotheses for the HUMIMIC[®] technology platform

metabolism & production

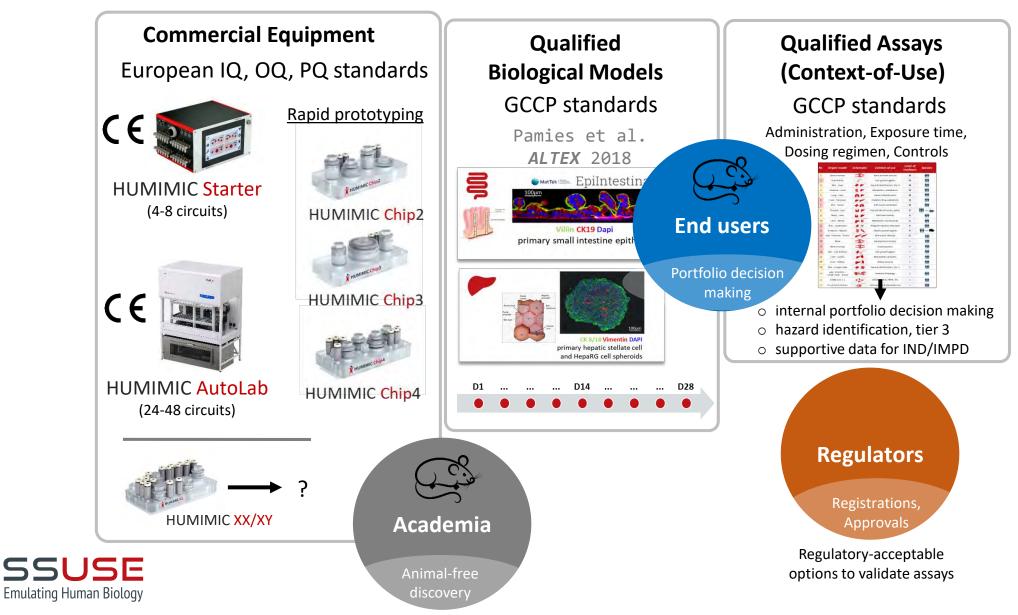


Chapter 11

"How drug development of the 21st century could benefit from human micro-organoid in vitro technologies" © 2007 Wiley VCH Weinheim, ISBN: 978-3-527-31488-1



- Organs are built up by multiple, identical, functionally self-reliant structural organoids
- Organoids are evolutionarily conserved and subject to genetically encoded self-assembly



Downscaling a human body: How small can we go?

Components of the HUMIMIC® MPS platform

Features of the HUMIMIC[®] platform, supporting easy transfer

HUMIMIC Starter

HUMIMIC AutoLab

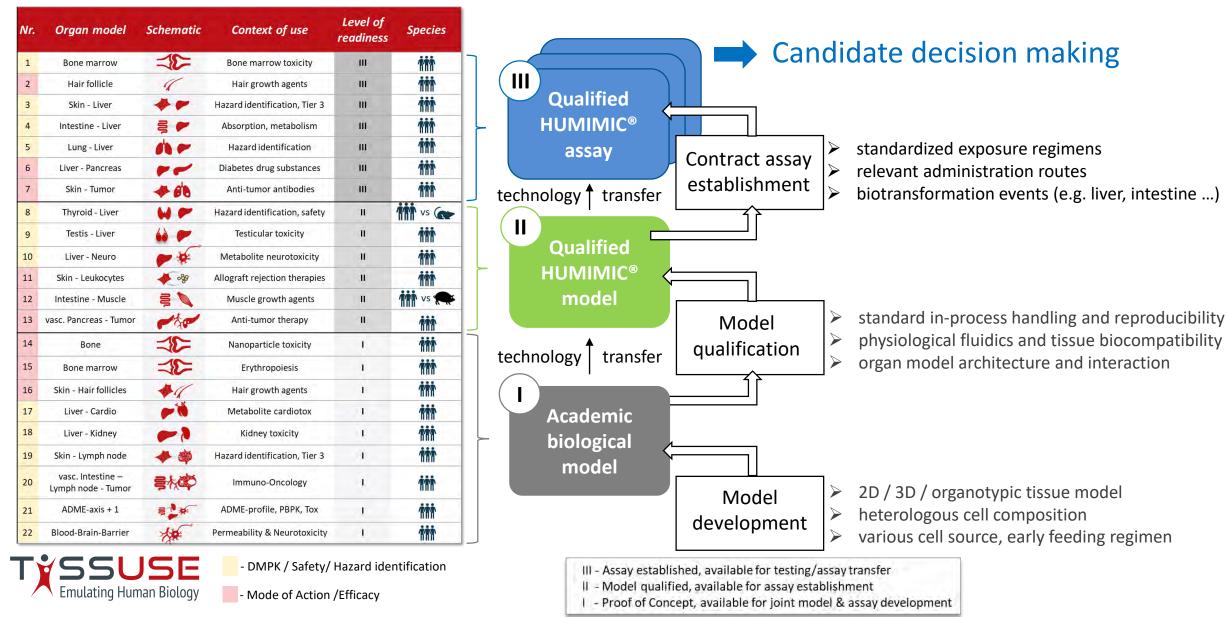
HUMIMIC Chip3

HUMIMIC Chip2

HUMIMIC Chip4

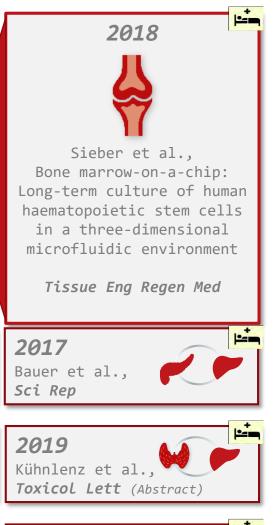
Cell culture inserts (96-/12-/24-well format)

Manufacturing:


Emulating Human Biology

- In-house manufacturing of equipment
- HUMIMIC Starter: 4x HUMIMIC Chip2
- HUMIMIC AutoLab: 24x HUMIMIC Chip2
- Dedicated chip manufacturing environment
- Rapid prototyping for customer specific solutions

Features:


- Size of a standard microscope slide
- On-chip micro-pump enabling pulsatile flow
- Suitable for primary and iPSC-derived cells, 3D constructs, biopsies and cell lines
- Compatible with life tissue imaging
- Plug-in option for insert-based barrier models

The assay portfolio and its levels of readiness

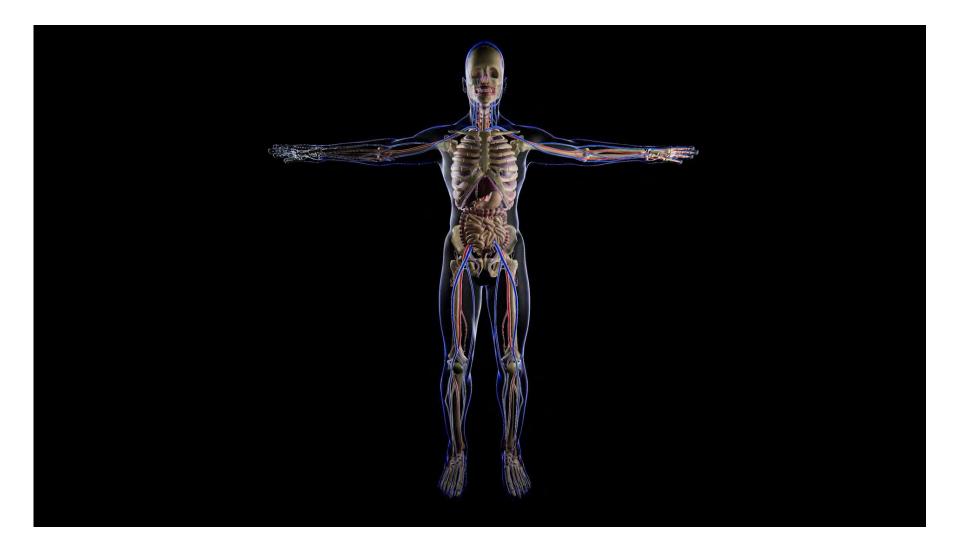
MPS assays used for internal portfolio decision-making in drug development

MPS-based Organ/Tissue model	Nr. of cases	Area of usage (drug development phase)	MPS- Supplier	End user	Reference (if available)	
Blood Vessel, Vasculature	5	Target identification, validation and compound selection	AIST	Daiichi-Sankyo	Satoh et al., 2016	
		Discovery (scleroderma)	Mimetas	Galapagos	-	
		Systems toxicology for consumer products	Mimetas	Philip Morris	Poussin et al., 2019	
		Pharmacokinetics and pharmacology	Mimetas	undisclosed	-	
		Target identification and validation	Mimetas	NovoNordisk	-	
Bone Marrow	4	Preclinical safety	TissUse	AstraZeneca	Sieber et al., 2018	
		Preclinical safety	Emulate	AstraZeneca	Chou et al., 2018	1
		Preclinical safety	TissUse	Roche	-	
		Preclinical safety	TissUse	Bayer	-	
Gut Epithelium	4	Discovery (inflammatory bowel disease)	Mimetas	Galapagos	Beaurivage et al., 2019	1
		Discovery	Mimetas	Roche	-	
		Clinical development	Mimetas	Roche	-]
		Preclinical Safety	Emulate	Roche	-	
Lung	3	Discovery (alveolus)	Wyss	undisclosed	Huh et al., 2012	
		Drug efficacy (epithelium)	Wyss	Pfizer, Merck USA	Benam et al., 2016	
		Preclinical safety	Emulate	Roche	-]
Liver	2	Pharmacological and toxicological effects	Emulate	AstraZeneca	Foster et al., 2019	
		Preclinical safety – assessment of species (Rat, Dog & Human)	Emulate	J&J, AstraZeneca	Jang et al., 2019	
Ocular compartment	1	Discovery	Fh IGB / EKUT	Roche	Achberger et al., 2019	
Kidney Epithelium	1	Pharmacokinetics and pharmacology	Mimetas	undisclosed	Vormann et al., 2018	
Liver-Pancreas	1	Target validation / identification	TissUse	AstraZeneca	Bauer et al., 2017	1
Liver-Thyroid	1	Preclinical safety – assessment of species-specificity (Rat and Human)	TissUse	Bayer	Kuehnlenz et al., 2019	-
Skin-Tumor	1	Preclinical safety & efficacy	TissUse	Bayer	Huebner et al., 2018	

2018

Sci Rep

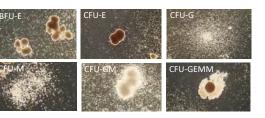
Hübner et al.,



 $\Sigma = 23$ cases

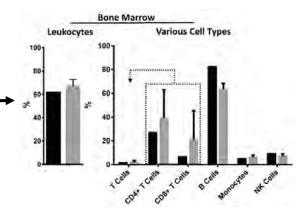
Marx et al., Biology-inspired Microphysiological Systems to Advance Medicines for Patient Benefit and Animal Welfare. ALTEX 2020

Modelling the human bone marrow unit


Hematopoietic potential of the HUMIMIC[®] bone marrow chip

Sieber et al.,					
Bone marrow-on-a-chip: Long-term culture of human haematopoietic					
stem cells in a three-dimensional microfluidic environment					
Tissue Eng Regen Med 2018					

four-week MOC culture

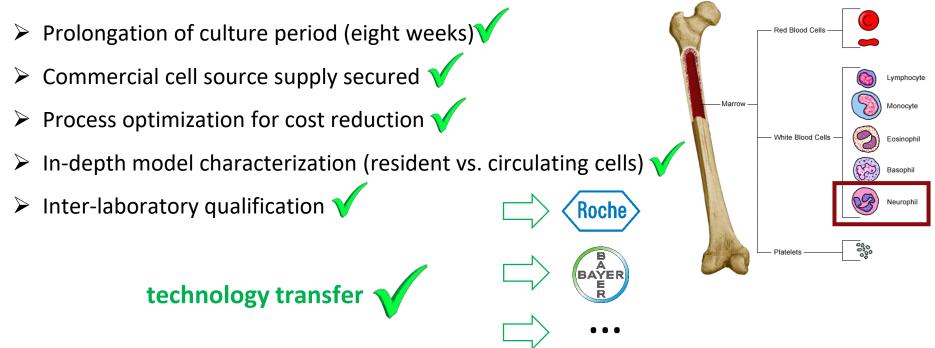

HUMIMIC Chip2

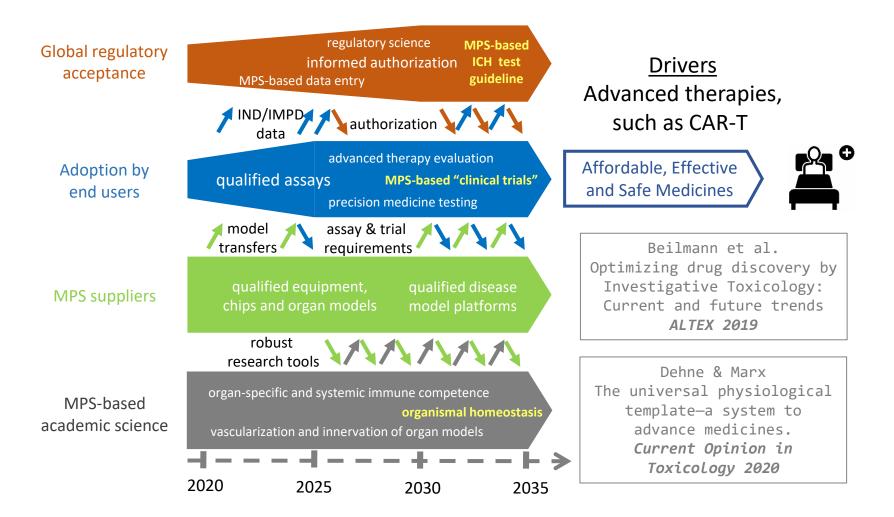
colony-forming unit assays

Isolated Day 28 Type **HSCs** (n=7) BFU-E 9 9 ± 4 CFU-E 7 ± 2 10 CFU-G 9 23 ± 7 CFU-M 6 14 ± 5 CFU-GM 3 4 ± 2 **CFU-GEMM** 11 5 ± 2

Human cell engraftment (20 weeks after injection)

bone-marrow repopulation of irradiated NOG mice


Industrial adoption for a specific context of use - a 2-year process


Drug safety and metabolism

Rationale: Use for human repeated dose hematopoietic lineage toxicity testing (scheduling)

The MPS Roadmap into the future

Conclusion

At academic level MPS-based scientific models, methods and tests support new discoveries and add to the investigation of mode of action of drug candidates and therapies

Qualified MPS- based single- and multi-organmodels can provide **qualified context of use assays** for safety and efficacy testing of for candidate drugs and advanced therapies.

The US FDA is the frontrunner in establishing frameworks for the end-users to validate such context of use assays within regulatory approval processes.

Please, refer to the next presentation of Suzanne Fitzpatrick, US FDA

Nr.	Organ model	Schematic	Context of use	Level of readiness	Species
1	Bone marrow	31	Bone marrow toxicity	ш	ŤŤŤ
2	Hair follicle	1	Hair growth agents	m	111
3	Skin - Liver	++	Hazard identification, Tier 3	m	İİİ
4	Intestine - Liver	3 -	Absorption, metabolism	m	İİİ
5	Lung - Liver	ne	Hazard identification	ш	ŤŤŤ
6	Liver - Pancreas		Diabetes drug substances	iii	ŤŤŤ
7	Skin - Tumor	# 60	Anti-tumor antibodies	iii	TH
8	Thyroid - Liver	WP	Hazard identification, safety	, II	111 vs (
9	Testis - Liver	62 📂	Testicular toxicity	п	ŤŤŤ
10	Liver - Neuro	-*	Metabolite neurotoxicity	11	111
11	Skin - Leukocytes	- ego	Allograft rejection therapies	Ш	ŤŤŤ
12	Intestine - Muscle	ş N	Muscle growth agents	П	🗰 vs 📻
13	vasc. Pancreas - Tumor	10	Anti-tumor therapy	11	ŤŤŤ
14	Bone	31	Nanoparticle toxicity	1	ŤŤŤ
15	Bone marrow	31	Erythropoiesis	1	111
16	Skin - Hair follicles	44	Hair growth agents	1	thi
17	Liver - Cardio	-	Metabolite cardiotox	1	ŤŤŤ
18	Liver - Kidney	->	Kidney toxicity	1	ŤŤŤ
19	Skin - Lymph node	*	Hazard identification, Tier 3	Ĵ.	titit
20	vasc. Intestine – Lymph node - Tumor	马大学	Immuno-Oncology	i.	thi
21	ADME-axis + 1	₹ ! ₩	ADME-profile, PBPK, Tox	ų.	ŤŤŤ
22	Blood-Brain-Barrier	to	Permeability & Neurotoxicity	1	titi -

For further information on any available product, model or assays ...

MPS-based Organ/Tissue model	Nr. of cases	Area of usage (drug development phase)	MPS- Supplier	End user	Reference (if available)
Blood Vessel, Vasculature	5	Target identification, validation and compound selection	AIST	Daiichi-Sankyo	Satoh et al., 2016
		Discovery (scleroderma)	Mimetas	Galapagos	
		Systems toxicology for consumer products	Mimetas	Philip Morris	Poussin et al., 2019
		Pharmacokinetics and pharmacology	Mimetas	undisclosed	-
		Target identification and validation	Mimetas	NovoNordisk	· · · · · · · · · · · · · · · · · · ·
Bone Marrow	4	Preclinical safety	TissUse	AstraZeneca	Sieber et al., 2018
		Preclinical safety	Emulate	AstraZeneca	Chou et al., 2018
		Preclinical safety	TissUse	Roche	-
		Preclinical safety	TissUse	Bayer	-
Gut Epithelium	4	Discovery (inflammatory bowel disease)	Mimetas	Galapagos	Beaurivage et al., 2019
		Discovery	Mimetas	Roche	
		Clinical development	Mimetas	Roche	
		Preclinical Safety	Emulate	Roche	
Lung	3	Discovery (alveolus)	Wyss	undisclosed	Huh et al., 2012
		Drug efficacy (epithelium)	Wyss	Pfizer, Merck USA	Benam et al., 2016
		Preclinical safety	Emulate	Roche	
Liver	2	Pharmacological and toxicological effects	Emulate	AstraZeneca	Foster et al., 2019
1		Preclinical safety – assessment of species (Rat, Dog & Human)	Emulate	J&J, AstraZeneca	Jang et al., 2019
Ocular compartment	1	Discovery	Fh IGB / EKUT	Roche	Achberger et al., 2019
Kidney Epithelium	1	Pharmacokinetics and pharmacology	Mimetas	undisclosed	Vormann et al., 2018
Liver-Pancreas	1	Target validation / identification	TissUse	AstraZeneca	Bauer et al., 2017
Liver-Thyroid	1	Preclinical safety – assessment of species-specificity (Rat and Human)	TissUse	Bayer	Kuehnlenz et al., 2019
Skin-Tumor	1	Preclinical safety & efficacy	TissUse	Bayer	Huebner et al., 2018

Medicines for Patient Benefit and Animal Welfare.

ALTEX 2020

Sieber et al., Bone marrow-on-a-chip: Long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment Tissue Eng Regen Med 2017 Bauer et al., Sci Rep -2019 Kühnlenz et al., Toxicol Lett (Abstract) -2018 Hübner et al.,

2018

please contact:

Dr. Reyk Horland

reyk.horland@tissuse.com

Korean Webinar, 05.03.21

Sci Rep

Thank you!

Academic support

[::::]EUTOXRISK

Industrial adoption

others

Fostering approaches for regulatory acceptance of MPS-based assays

