

Available and emerging non-animal models for human respiratory tract diseases

Lindsay Marshall, PhD

Today's talk

- The human respiratory tract and the need for relevant models
- Our knowledge source on human respiratory tract diseases
- Our results
- Conclusions and Observations

Human airways are complicated!

- They are not only for beathing...
- ... they form a functional barrier, effective defences, efficient gas exchange
- The airways are a complex, complicated system of cells, cell secretions and products, with many different cell types working together

Airways feature	Mice	People
Breathing pattern	Nose (always)	Nose or mouth
Airways branching	Monopodial	Irregular dichotomous
Airways cells	Differences in type and number throughout the airways	
Immune response	Numerous differences	

Thousands of animals are used for respiratory disease research every year...

... despite the failure of animal data to give us
relevant answers for human respiratory diseases –

 *Asthma
 *Cystic fibrosis
 *COPD
 *Pulmonary fibrosis
 *Covid19?

* Mice are not naturally susceptible to any of these conditions

Different species/animal models might recreate different individual features of a human disease, but no single animal 'model' recreates the human condition

Our project:

Non-animal models for respiratory tract diseases Note that our research was all carried out PC (precovid19!)

Methods: Literature searches, plus outreach to researchers in the field. Publication years - 2008- 2019

Exclusion criteria: live animals, drug effects, novel formulations Separate searches for non-cancer (asthma, COPD, cystic fibrosis) and cancer

More info:

Report - https://ec.europa.eu/jrc/en/page/respiratory-tract-diseases-183208

Dataset - https://data.jrc.ec.europa.eu/dataset/176d71e6-5082-4b29-8472-b719f6bda323

Advanced Non-animal Models in Biomedical Research

Respiratory Tract Diseases

Results

Results – model categories

Results –**Cell/tissue types**

Cell types/lines

BSOMED²⁷

Results – Endpoints

BSOMED²¹

Results – Applications

Conclusions

- Baseline –healthy airways models needed/important
 - 69 publications describe "general" models
- Disease models
 - Recapitulate discrete, specific disease features
 - Utility in drug development
- Disconnect between lung models and lung cancer models
 - Issues with retrieving valid lung cancer models
 - Continued reliance on patient-derived xenografts

Conclusions

- What else is needed?
 - Lung injury (severity of animal models)
 - Disease diagnosis biomarker identification?
 - Mucosal models learn from other fields (ongoing?)
- Funding prioritise the advanced non-animal approaches
- Training (at every level)
- Promote/enable more commercial model use eg MucilAir (EPA) and OncocilAir
- Incentives?

Thank you

Project collaborators – Jarlath Hynes, Prof Ian Adcock EcoMole Joint Research Centre

Imarshall@hsi.org https://www.linkedin.com/in/lindsaymarshall-hsi/ @BioMed_21

Create a more humane society

ARANA MAY - MAXI

